	(Sub-)species, form, subpopulation	Chromosome number	Constrictions	X-, Y-chromosome	Banding patterns	Genetic distance (average number of nucleotide substitutions per site)	Other
	Asian lorises						
	Reconstructed ancestral karyotype for lorises and pottos	$2 \mathrm{n}=62^{166}$.		X-chromosome metacentric ${ }^{166}$.			12 autosomes metacentric, other chromosomes with the exception of the X chromosome acrocentric (karyotype appearing to be very similar to that of Galago crassicaudatus monteiri, differing only by a pericentric inversion of reconstructed ancestral lorisiform chromosome 6. This karyotype resembles that reconstructed by ${ }^{181}$ using Giemsa staining technique ${ }^{166}$.
L I	Slender lorises, genus Loris, general To avoid confusion, the old taxonomic names (above) are listed here in addition to the new names based on Groves 2001 because taxonomic research may lead to further changes.	$2 \mathrm{n}=62^{167} \text { quoting }{ }^{165},$ 168 and ${ }^{169}$. 62^{36} (own results and quoting other authors in addition).		X: S. Y: S-A ${ }^{167}$ quoting ${ }^{165},{ }^{168}$ and 169. Loris tardigradus, origin / subspecies unknown: X: SM; Y: small SM ${ }^{36}$, quoting ${ }^{168}$.			S-M: 34-38. A: 26-22 ${ }^{167}$, quoting ${ }^{165}, 168$ and ${ }^{169}$. Indian and Sri Lankan lorises appear to be chomosomally distinct (based on three wildcaught lorises from Sri Lanka, two of them large grey ones, one small reddish animal, all karyotypically distinct from each other ${ }^{36}$. Loris tardigradus, origin / subspecies unknown: large SM: 20; small SM: 14; A: 26 36, quoting 168.
	Slender lorises, genus Loris, Origin India, subspecies undetermined			Loris tardigradus, origin India, subspecies unknown: X: SM; Y: small A^{36}, quoting ${ }^{165}$.			Loris tardigradus, origin India, subspecies unknown: large SM: 22; small M: 16; A: 22^{36}, quoting ${ }^{165}$.
	Slender lorises, genus Loris, Origin Sri Lanka, subspecies undetermined						

Table 5: cytogenetic and moleculargenetic differences
${ }^{1}, 2, \ldots$: source, author quoted.

	(Sub-)species, form, subpopulation	Chromosome number	Constrictions	X-, Y-chromosome	Banding patterns	Genetic distance (average number of nucleotide substitutions per site)	Other
L II a	Old name: L. t. tardigradus Groves 1998, 2001: change into distinct species L. tardigradus ${ }^{64},{ }^{65}$, ${ }^{233}$). Including several phenotypically distinctlooking forms: see for instance ${ }^{227}$, L II b, L II c and loris identification key in this database.			Loris C kept at Adelaide Zoo (female, golden-brown, ventrally golden-yellow to off-white, head-body-length 217 mm , hindfoot length 46.6 mm , weight 188-217 g): X: SM; Y: 36.			Loris C, adelaide Zoo: 9 pairs of SMs, 8 M pairs, 13 A pairs 36.
L II b	Small form with the appearance of a shorter muzzle ${ }^{15}$.						
L II c	Small form with longerlooking muzzle / heartshaped (L. t. grandislike) face ${ }^{15}$.						
L II d	(L. gracilis zeylanicus: synonym?) ${ }^{2}, 14$.						
L III	Loris lydekkerianus 233. Groves 1998, 2001: species including all formerly known Loris subspecies except from the former L. t. tardigradus ${ }^{64},{ }^{65}, 233$.						
L IV	Old name: Loris tardigradus malabaricus (Wroughton, 1917) ${ }^{1}$ Groves 1998, 2001: L. lydekkerianus malabaricus ${ }^{64},{ }^{65}, 233$.						
L V	Old name: Loris tardigradus lydekkerianus (Cabrera, 1908) ${ }^{1}$. Groves 1998, 2001: \boldsymbol{L}. lydekkerianus lydekkerianus ${ }^{64,}, 6,233$.						
	India, no information about subspecies			X: SM; Y: small A ${ }^{36}$ quoting 165.			22 large SM, 16 small M, 26 A ${ }^{36}$ quoting ${ }^{165}$.

Table 5: cytogenetic and moleculargenetic differences
${ }^{1}, 2, \ldots$: source, author quoted.

	(Sub-)species, form, subpopulation	Chromosome number	Constrictions	X-, Y-chromosome	Banding patterns	Genetic distance (average number of nucleotide substitutions per site)	Other
L VI	Loris tardigradus nordicus (Osman Hill, 1933) ${ }^{1}$ (proposition 1998: identical with / synonym of L. Lydekkerianus grandis, ${ }^{64}$, 65. L. lydekkerianus nordicus if distinctness is found?).	62 ($\mathrm{n}=1$ male from Polonnaruwa) ${ }^{166}$.		X-chromosome submetacentric, Y- chromosome short, acrocentric ${ }^{166}$.			30 meta-, submetacentric; 30 acrocentric ${ }^{166}$; reevaluated by ${ }^{36}$ from figure 1 in the publication as possibly 1-15 $=$ SM or M, 16-28 A; 29-30 M, $=34 \mathrm{SM}$ or M and 26 A as in the grey Sri Lankan lorises from Adelaide Zoo.
	Old name: Loris tardigradus nordicus (Osman Hill, 1933) ${ }^{1}$. Groves 1998, 2001: museum specimens indistinguishable from / synonym of \boldsymbol{L}. lydekkerianus grandis 64, 65, 233. May turn out to be \boldsymbol{L}. lydekkerianus nordicus in the future if further studies prove distinctness.	$62(\mathrm{n}=2)^{36}$.		Loris A, Adelaide Zoo (male, ashy-grey, ventrally creamyyellow, head-body-length 246 mm , hindfoot length 51.2 mm , weight 293-430 g): X: SM; Y: small A; Loris D, Adelaide Zoo (female, grey-brown, ventrally buff, head-body-length 215 mm , hindfoot length $43-44 \mathrm{~mm}$, weight 175-197 g): X: SM; Y: small A ${ }^{36}$.			Loris A, Adelaide Zoo: 8 pairs of SM autosomes, 9 pairs of Ms and 13 pairs of As. Loris D, Adelaide Zoo: 9 pairs of SMs, 9 M pairs, 12 A pairs 36.
L VII	Old name: Loris tardigradus grandis (Osman Hill and Phillips, 1932) ${ }^{1}$ Groves 1998, 2001: L. lydekkerianus grandis 64, 65, 233.						Results by Goonan (!996): see above (identification as L. t. grandis correct?)
L VIII	Old name: \boldsymbol{L}. tardigradus nycticeboides (Osman Hill, 1942) ${ }^{1}$. Groves 1998, 2001: L. lydekkerianus nycticeboides ${ }^{64}, 65,233$.						

Table 5: cytogenetic and moleculargenetic differences
$1,2, \ldots$: source, author quoted.

	(Sub-)species, form, subpopulation	Chromosome number	Constrictions	X-, Y-chromosome	Banding patterns	Genetic distance (average number of nucleotide substitutions per site)	Other
NX	Nycticebus E. Geoffroy $1812{ }^{233}$. Genus Nycticebus in general, lesser slow lorises included or species not mentioned					Mitochondrial DNA: mean genetic distance between N. pygmaeus and N. coucang: 0.053 (0.046-0.067); divergence between the two species may have 2.7 MA (million years) ago 7.	
Np	Lesser slow lorises						
Np I	Nycticebus pygmaeus (Bonhote, 1907) ${ }^{3},{ }^{1},{ }^{2}$, see also ${ }^{38}$. (N. intermedius and other possible pygmaeus-like forms included).	$\begin{aligned} & 2 \mathrm{n}=50^{2} . \\ & 2 \mathrm{n}=50^{167} \text { quoting }{ }^{170} . \end{aligned}$					
Np I b	N. pygmaeus (Bonhote, 1907) ${ }^{4}$, distinguished from N. intermedius).	50 from 1 male from Maguan of Yunnan, China ${ }^{8}$.	No secondary constriction 8.	X-, Y-chromosome: subteleocentric ${ }^{8}$.	Ag-NORs on chromosome pairs 6, $9,15,20$: at the tips of short arms. NORs heteromorphic in 95% of pair 20. Association of Ag-NORs observed in $9 \%{ }^{8}$.	Mitochondrial DNA: mean genetic distance to N. intermedius: 0,009 (0.0060.012); Mean genetic distance of both to N. coucang: 0.053 (0.046 0.067) ${ }^{7}$.	All chromosome pairs pairs in the complement are biarm. 11 pairs of metacentric chromosomes (nos. 2, 10, 14, $17-24, \mathrm{n}=1$ individual ${ }^{8}$.
$\overline{\mathrm{Np} \mathrm{II}}$	Synonym / proposed species: Nycticebus intermedius (Dao, 1960) 4.	50 from 2 individuals (1 female, 1 male) from Hekou of Yunnan, China 8.	No secondary constriction 8.	X-, Y-chromosome: subteleocentric ${ }^{8}$.	Ag-NORs on chromosome pairs 6, $9,15,20$: at the tips of short arms. NORs heteromorphic in 95% of pair 20. Association of Ag-NORs observed in $9 \%{ }^{8}$.	See above (N. pygmaeus); phylogenetic trees on the basis of genetic distance showed that N. intermedius should be included within N. pygmaeus ${ }^{7}$.	All chromosome pairs pairs in the complement are biarm. 11 pairs of metacentric chromosomes (nos. 2, 10, 14, $17-24, n=2$ individuals ${ }^{8}$.
Np III	Proposed species: Nycticebus sp. New species proposed 1997, possibly corresponding to N. intermedius ${ }^{46}$, 47 .						
Np IV	(Nycticebus chinensis? New species proposed? Based on newspaper reports) ${ }^{96}, 161$.						
N	Slow lorises (lesser slow lorises not included)	$\begin{aligned} & \hline 2 \mathrm{n}=50,52^{2} . \\ & 2 \mathrm{n}=50-52^{167} \text { quoting } \\ & 170,171,172,173,174 \text { and } \\ & 175 . \end{aligned}$ Some animals with $2 \mathrm{n}=$ 52 (${ }^{8}$, quoting ${ }^{182}$ and 183); see also column "other".	Giemsa stain: secondary constriction in the proximal third of the short arm of pair $2{ }^{32}$.	Various X chromosome morphologies were described: a large metacentric ${ }^{8}$, quoting ${ }^{175}$), a submetacentric (${ }^{8}$, quoting 172 and ${ }^{173}$), a long subtelocentric (${ }^{8}$, quoting ${ }^{181}$) and a medium-sized acrocentric $\left({ }^{8}\right.$, quoting $\left.{ }^{174}\right)$.	Study of a slow loris male kept at the Museum National d'Histoire Naturelle, Paris.("N. coucang") with several banding techniques: R (RHA), Q, T. C., Giemsa ${ }^{32}$. Q-, G- and C-banding patterns and Ag-NORs (Ag-stained nucleolar organizer regions) have been investigated and a standardized Gbanded idiogram has been presented (${ }^{8}$, quoting ${ }^{32}, 184$ and 185).	See above (N. pygmaeus)	S-M: $48{ }^{167}$ quoting ${ }^{172},{ }^{177}$, 178, 179 and ${ }^{180 .}$ All chromosome pairs pairs in the complement are biarm ${ }^{8}$. Some animals with $2 \mathrm{n}=52$ and a complement in which a long biarm pair has been replaced by two long acrocentrics and two small biarm chromosomes ${ }^{8}$, quoting ${ }^{182}$ and ${ }^{183}$).

Lorises and pottos: species, subspecies, local populations. In: http://www.species.net

Table 5: cytogenetic and moleculargenetic differences
$1,2, \ldots$: source, author quoted.

	(Sub-)species, form, subpopulation	Chromosome number	Constrictions	X-, Y-chromosome	Banding patterns	Genetic distance (average number of nucleotide substitutions per site)	Other
N I	Nycticebus bengalensis ${ }^{64,}{ }^{65}$, Old name: N. c. bengalensis. ${ }^{233}$. Includes N I b to N I d ${ }^{2}$, ${ }^{3}$; Osman Hill distinguished tenasserimensis from this form ${ }^{1}$.	50 from 1 female from southern Yunnan, China 8.	A secondary constriction in the short arms of pair 1, heteromorphic and often more visible in one of the members of the pair ${ }^{8}$.	X-chromosome: a long subtelocentric, length like pair 2, $3^{8 .}$ X: S. Y: S ${ }^{167}$, quoting ${ }^{172, ~}{ }^{177}$, 178, 179 and ${ }^{180}$.	Ag-NORs on chromosome pairs 1, $6,9,15,23$: in the terminal region of short arms. NORs heteromorphic in pairs 15,23 , in fewer cells in pair 20. Association of Ag-NORs observed in $1 \%{ }^{8}$.		12 pairs of metacentric chromosomes (nos. 1, 2, 10, $14,17-24, \mathrm{n}=1$ animal 8
N I b	Synonym (subpopulation): N. c. cinereus (A. MilneEdwards, 1867) ${ }^{1}$.						
N I c	Synonym (subpopulation): N. incanus (Thomas 1921) 1						
N I d	Synonym (subpopulation): N. c. tenasserimensis (variable population with coucang-like features in some specimens, possibly including bengalensiscoucang transition forms (Elliott, 1912) 265.						
N III	N. c. coucang (Boddaert, 1785) ${ }^{2}$ (includes Nc III b-e; compare with Nc III b).						
N III b	Synonym (subpopulation): N. c. coucang (Boddaert, 1785) ${ }^{1}$.						
N III c	Synonym (subpopulation): N. c. hilleri (Stone et Rehn, 1902) ${ }^{1}$.						
N III d	Synonym (subpopulation): N. c. insularis (Robinson, 1917) ${ }^{1}$.						
N III e	Synonym (subpopulation): N. c. natunae (Stone et Rehn, 1902) ${ }^{1}$.						
N IV	N. c. menagensis (Lydekker, 1893) ${ }^{2}$; (including N IV b-d).						
N IV b	Synonym (subpopulation): N. c. borneanus (Nachtrieb, 1892; Lyon, 1908) ${ }^{1}$.						

Table 5: cytogenetic and moleculargenetic differences
$1,2, \ldots$: source, author quoted.

	(Sub-)species, form, subpopulation	Chromosome number	Constrictions	X-, Y-chromosome	Banding patterns	Genetic distance (average number of nucleotide substitutions per site)	Other
$\overline{\mathrm{N} \text { IV c }}$	Synonym (subpopulation): N. c. menagensis (Lydekker, 1893) ${ }^{6}$ (only from Tawitawi Archipelago; compare with N IV).						
N IV d	Synonym (subpopulation): N. c. bancanus (Lyon, 1906) ${ }^{1}$.						
N V	Nycticebus coucang javanicus (E. Geoffroy, 1812) ${ }^{1,2,3, ~}{ }^{3}, 233$. May turno out to be a distinct species, Nycticebus javanicus, in the future ${ }^{64}$, 65, 233.						
African forms							
A I	Genus Arctocebus (formerly believed to consist of 1 species, \boldsymbol{A}. calabarensis, compare with A II) ${ }^{33}$.	$\begin{aligned} & 2 \mathrm{n}=522^{28},^{2} . \\ & 2 \mathrm{n}=522^{167} \text { quoting }{ }^{172} \\ & \text { and }{ }^{175 .} \text {. } \end{aligned}$		X submetacentric, Y metacentric ${ }^{28}$. X: S. 167 quoting ${ }^{172, ~}{ }^{177}, 178,179$ and ${ }^{180}$.			28 metacentrics and submetacentrics, 22 acrocentrics and subacrocentrics ${ }^{28}$. S-M: 50.167 quoting ${ }^{172,}, 177$, 178,179 and ${ }^{180}$.
A II	A. calabarensis (J.A. Smith, 1863) ${ }^{33},{ }^{1}, 2$ (formerly regarded as subspecies A. c. calabarensis).						
A III	A. aureus De Winton, $1902^{33}, 1,2$.						
P I	Genus Perodicticus Bennett, 1831; Perodicticus potto (P . L. S. Müller, 1776) (possibly including unrecognized species such as the proposed new genus Pseudopotto? See below).	$\begin{aligned} & \hline 2 \mathrm{n}=622^{32},{ }^{28} . \\ & 2 \mathrm{n}=622^{167} \text { quoting }{ }^{172,} \\ & { }^{177,178,179 \text { and }{ }^{180 .}} . \end{aligned}$		X submetacentric, Y acro-centric 28. X: S. Y: A 167 quoting ${ }^{172,}{ }^{177}$, 178, 179 and ${ }^{180 .}$	Study of a potto female kept at the Museum National d'Histoire Naturelle, Paris, with several banding techniques: R (RHA), Q , T., C., Giemsa ${ }^{32}$.		```32 metacentrics and submetacentrics, 28 acrocentrics and subacrocentrics (many chromo-somes in the second row possess variable short arms and are counted as acrocentric) \({ }^{32,} 28\). S-M: 24. A: \(36{ }^{167}\) quoting \({ }^{172}\), \(177,178,179\) and \({ }^{180 .}\)```
P II	P. p. potto (P. L. S. Müller, 1766) ${ }^{2}$ (includes P II b-P II c).						

Table 5: cytogenetic and moleculargenetic differences
${ }^{1}, 2, \ldots$: source, author quoted.

	(Sub-)species, form, subpopulation	Chromosome number	Constrictions	X-, Y-chromosome	Banding patterns	Genetic distance (average number of nucleotide substitutions per site)	Other
P II b	Synonym (subpopulation): P. p. potto (P. L. S. Müller, 1766) ${ }^{1}$ (not including P II c).						
P II c	Synonym (subpopulation): P. p. juju (Thomas, 1910) ${ }^{1}$.						
P III	P. p. edwardsi (Bouvier, 1879) ${ }^{2}$ (includes P III b - P III c). Possibly including other species.						
P III b	Synonym (subpopulation): P. p. edwardsi (Bouvier, 1879) ${ }^{1}$.						
P III c	Synonym (subpopulation): P. p. faustus (Thomas, 1910) ${ }^{1}$.						
P IV	P. p. ibeanus (Thomas, $1910)^{2} .$						
Ps	Pseudopotto martini: new genus proposed in 1996 ${ }^{34}$. Current data insufficient 68.						

